

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

Open chiplets to enable a new era of silicon

Amber Huffman Google Cloud

With material & thanks to Partha Ranganathan, Martin Dixon, Peter Onufryk, and Rohit Mittal

Challenge with Moore's Law

Demand is increasing faster than ever ...

Image source: OpenAl

Image source: vbench, ASPLOS'18

... but technology plateaus ...

Rise in Specialization

January 24 - 26, 2023 DoubleTree by Hilton San Jose

ChipletSummit.com

Google VCU: Accelerating YouTube & More

Introduced to the world at ASPLOS 2021

Google

Warehouse-scale Video Acceleration Co-design and Deployment in the Wild

ASPLOS 2021

vcu@google.com

Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman, Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubramanian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In Suk Chong, Niranjani Dasharathi, Jia Feng, Brian Fosco, Samuel Foss, Ben Gelb, Sarah J. Gwin, Yoshiaki Hase, Da-ke He, C. Richard Ho, Roy W. Huffman Jr., Elisha Indupalli, Indira Jayaram, Poonacha Kongetira, Cho Mon Kyaw, Aaron Laursen, Yuan Li, Fong Lou, Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire Mahony, David Alexander Munday, Srikanth Muroor, Narayana Penukonda, Eric Perkins-Argueta, Devin Persaud, Alex Ramirez, Ville-Mikko Rautio, Yolanda Ripley, Amir Salek, Sathish Sekar, Sergey N. Sokolov, Rob Springer, Don Stark, Mercedes Tan, Mark S. Wachsler, Andrew C. Walton, David A. Wickeraad, Alvin Wijaya, and Hon Kwan Wu.

goo.gle/vcu for the paper and "Warehouse Video Acceleration" talk on YouTube

Google TPU v1 (2015):

Accelerating Inference

First accelerator for ML Inference

- 92T Ops/sec (8-bit) @ 700MHz
- single-chip system
- built as coprocessor to a CPU

Google TPU v2 (2017): Accelerating Training

TPU v2 target ML training

- More flops and more memory
- High bandwidth interconnect enables multi-chip scaling

TPU Pod -> ML Supercomputer

 Multi-chip Pod reduces ML training that takes 60-400 days to hours

Cloud TPU v2

180 teraflops

64 GB High Bandwidth Memory (HBM)

Cloud TPU v2 Pod

11.5 petaflops

4 TB HBM

2-D toroidal mesh network

Google TPU v3 (2018): Accelerate Training More!

Cloud TPU v2

180 teraflops 64 GB High Bandwidth Memory (HBM)

2X HBM

Cloud TPU v3

420 teraflops 128 GB HBM

Cloud TPU v2 Pod

11.5 petaflops
4 TB HBM
2-D toroidal mesh network

Cloud TPU v3 Pod

100+ petaflops 32 TB HBM 2-D toroidal mesh network

Custom Silicon is expensive

Getting closer to the Reticle Limit

The mask/reticle is the 'glass' plate that has the exposure pattern for a modern semiconductor process

Current size limit for steppers is 850-900 mm²

Yields at the largest sizes are low

Chip feature	TPUv2	TPUv3
Production	Q3 2017	Q4 2018
deployment		
Peak TOPS	46 (bf16)	123 (bf16)
Clock freq.	700 MHz	940 MHz
Tech. node,	16nm	16 nm
Die size	< 625mm ²	< 700 mm ²
Transistor count	9 billion	10 billion

Source: Jouppi, "Ten Lessons From Three Generations..."

Wafer Costs & Yield

not reflective of any specific process

TSMC's Estimated Wafer Prices Revealed: 300mm Wafer at 5nm Is Nearly \$17,000

By Anton Shilov published September 18, 2020

High performance and high transistor density come at a cost

https://www.tomshardware.com/news/tsmcs-wafer-prices-revealed-300mm-wafer-at-5nm-is-nearly-dollar17000

Chiplets arise

What is a Chiplet?

Historically, die=package=chip.

Recently, >1-2 die in a package/chip

die=chiplet

- GPUs have many dies
- AMD has 4-8 "compute" dies + 1 "I/O" die
- Intel showed images of four identical dies

Intel package shown on the right

Four symmetric chiplets combined to build one x86-architecture chip

The Rise & Promise of Chiplets

Devices that exceed maximum reticle size

Reuse reduces device design time and cost

Smaller chiplets improves silicon yield and reduces cost

Different semiconductor processes reduces device cost and enables greater levels of integration and can lower risk

Different teams/companies may enable innovation & specialization

Chiplet Journey

Bespoke challenges

Example: Bespoke Chiplet Solutions

AMD Epyc 7002

https://developer.amd.com/wp-content/resources/56827-1-0.pdf

Intel Lakefield

https://newsroom.intel.com/press-kits/lakefield/

Chiplet Challenges: NUMA

Monolithic

Shared LLC

Chiplets

LLC broken up...

Chiplet Challenges: Security & Manageability

Chiplets

Security and Manageability

... are **really** difficult!

Monolithic

Communication across the chip is easy :-)

Journey continues

Chiplet Journey

Standard Physical Interfaces

Mechanical and electrical interfaces are defined enabling a die-to-die physical layer IP

Standard Protocols

Standard protocols are defined enabling die-to-die fabric and controller IP and the beginning of an open chiplet ecosystem

Standard Form Factors, Plug & Play

Dreams of 'Legos'

Standardized form-factors are hard

What's the right size for a chiplet? Right shoreline?

Interesting journey ahead of us

Learning More and Getting Involved

Specifications are emerging, but much more needs to be done

Biggest opportunities in standards near term are Security & Manageability, Form Factors, and Interoperability

More Information

Open HBI: Download <u>here</u>

Bunch of Wires: Download here

ODSA: Wiki <u>here</u>

Universal Chiplet Interconnect Express:
 www.uciexpress.org

Google blog available <u>here</u>

A chiplet innovation ecosystem for a new era of custom silicon

Parthasarathy Ranganathan VP, Technical Fellow

As traditional motions are alw improvements solve down, we are low uning to custom chips to continue improving performance and efficiency. Innovations like Google's Tensor Processing Units (TPUs) and Video Coding Units (VCUs) have been incredibly valuable at sustainably meeting the growing demand for machine learning and video distribution services, and we expect to see additional custom chips that meet the emerging needs of our customers and users.

But building custom chips is a complex and costly endeavor. In particular, the semiconductor industry faces a key challenge. Each successive generation (technology

Our Opportunity: Make the SoC the New Motherboard!

Thank you.

