

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

Improving Electromagnetic Simulation for Chiplet-based 2.5D/3DIC Designs

Feng Ling Founder and CEO

Xpeedic

Jan 25, 2023

CONTENT

- 1. SI/PI analysis need for chiplet
- 2. EM simulation challenges for chiplet
- 3. Today's EM simulation landscape
- 4. Xpeedic's EM solver solution for Chiplet
- 5. Benchmark examples
- 6. Summary

SI/PI Analysis for Chiplet-based 2.5D/3DIC Designs

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

EM Simulation Challenges for Chiplet SI/PI Analysis

- 3D in nature
 - Densely packed interconnect + bump-via-trace transitions + TSV
 - 3D EM solver is needed
- Large scale
 - Number of D2D interconnects
 - Dense interconnects with small L/S and various ground structures -> crosstalk should be accurately characterized -> many nets should be simulated together
 - Large-capacity EM solver is needed
- High data rate
 - Full-wave EM solver is needed
- Multi scale
 - Multi-scale EM solver is needed for co-simulation of die, interposer, and substrate due to the dramatic L/S difference

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

Today's EM Simulation Landscape

- Different solvers are preferred at IC level and package/board level
- Disjointed flow from IC, interposer, package, to board
- Difficult to simulate die-on-interposer or interposer-on-package due to the problem size and the multiscale nature of the problem

Xpeedic's Dedicated Solver/Mesh for Chiplet

Fast Large-scale Solver

Intelligent Mesh Technology

- Optimal rectangle-triangle mixed mesh
- Result in mesh element reduction and mesh regularization

- Auto mesh tunneling technique
- Convergent results with minimum number of mesh elements.

CHIP

Multicore- and Cloud-Ready

XPEEDIC

High Capacity and Scalable Solver

Order of Magnitude Faster than Competitor Tools

DoubleTree by Hilton San Jose ChipletSummit.com

Multi-modes Enable Scenarios from Design to Sign-off

• Geometry simplification and solver modes (speed-balancedaccuracy) cover all your needs for accuracy or speed.

Success with Various Chiplet Cases

fidential January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

CHIP

1. HBM Interconnect on CoWoS-R and CoWoS-S

CoWoS-R

TSMC CoWoS-R, 6L Cu layers

- Coplanar GSGSG
- Routing width/spacing 2um/3um

CoWoS-S TSMC CoWoS-S, 4L Cu layers

- Microstrip with ground separator
- Routing width/spacing 2um/1.8um

•

CoWoS-R 12 Nets

• Routing width/spacing 2um/3um

idential January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

CoWoS-R 12 Nets Results

- Rdc=1/sigma*L/W/T=1/5.7e7*5100/2/2.5e-6=18 Ohm
- S11=20*log(Rdc/(100+Rdc))=-16.3 dB
- S12=20*log(100/(100+Rdc))=-1.4 dB

CHIP

CoWoS-R 12 Nets: Metis vs Reference

	Freq points	Peak Memory (GB)	WallTime (Hour)	Metis
Metis with HPC (10 tasks in parallel)	13	474	2.4 10x	Reference
Reference with HPC (4 tasks in parallel)	13	828	24.1	

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com X PEEDIC

CoWoS-S 48 Nets

- 24 nets from Channel C on metal3 and the same 24 nets from Channel G on metal1 are simulated
 - 16 DQ's (64-79), 2 DBI's, 2 DM's, 2 WDQS', 1 RD, and 1 PAR

Channel C

XJEED

CoWoS-S 48 Nets Results

	Freq points	Peak Memory (GB)	WallTime (Hour)
Metis with HPC (5 tasks in parallel)	10	394	17

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com XPEEDIC

CoWoS-S 48 Net: Metis vs Reference

MetisReference

XPEEDIC

CoWoS-S 48 Net: Inter- & Intra-Layer Crosstalk

MetisReference

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

SerDes Channel with TSV on CoWoS-S

- TSV is supported in Metis;
- Metis solver can accurately capture the slow-wave, dielectric quasi-TEM, and skin-effect modes from DC to high-frequencies;
- The TSV coating does not cause significant mesh increase.

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

— 1 um coating— 0.5um coating— no coating

Serbes Channel with TSV Example.

Xpeedic 5

---Metis (no coating) ---Metis (W/ coating) ---HFSS (W/ coating)

coating

CHIP

RL

2. HBM Channel with Samsung I-Cube

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

HBM Channel Extraction (192 nets)

DoubleTree by Hilton San Jose

ChipletSummit.com

CHIP

Summary

- Chiplet poses great challenges for SI/PI analysis
- A new EM solver is required to cover all the chiplet needs
- The novel EM solver from Xpeedic enables accurate and efficient simulation for chiplet designs
- Success stories on various chiplet designs demonstrate its key advantages on capacity and accuracy.

