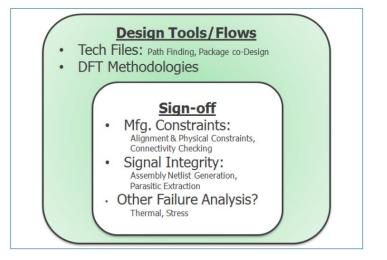


Developing and Managing System Netlists for Chiplets Integration

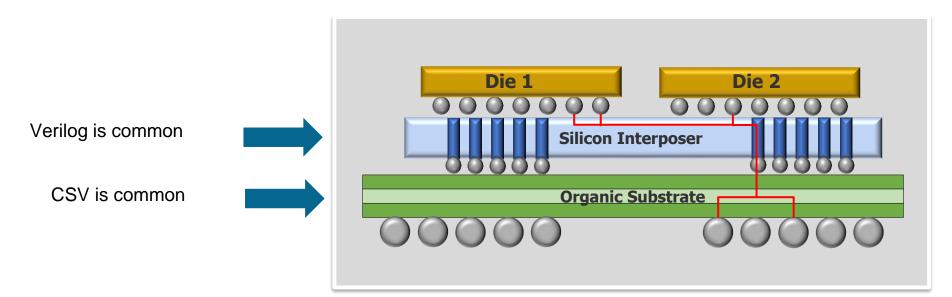
Michael Walsh Technical Director, 3D-IC Solutions Sales


Agenda

- Introduction
- System Level Connectivity
- Cross Domain Assembly Verification
- Conclusion
- Q&A

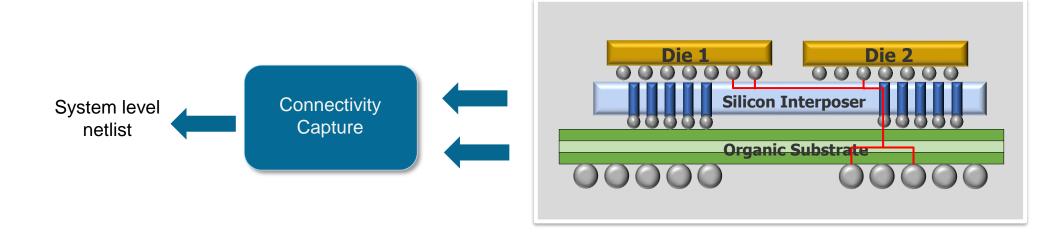
Introduction

- Heterogeneous Integration is gaining significant traction
 - Chiplets: "mix and match" IPs as dies
 - Silicon interposer-based
- Designers need to ensure:
 - Acceptable yield
 - Correct functionality (as intended)

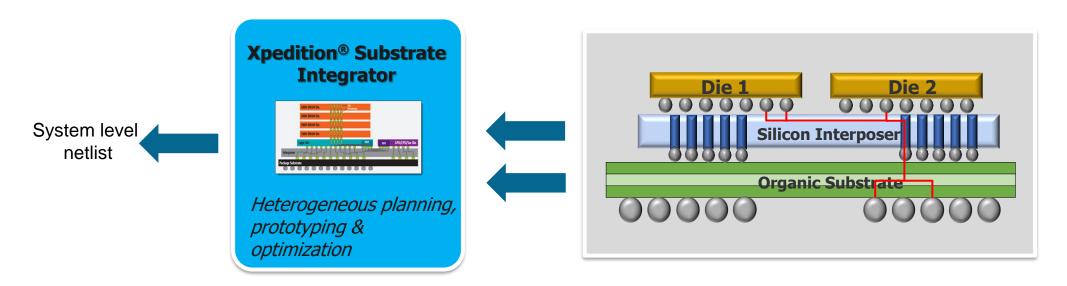


- For "full assembly" physical verification ... what is required?
 - Confirm that the full assembly is connected as "intended"
- How can the designer capture the "intended" connectivity?
 - Multiple substrates (for ex: interposer + organic package)

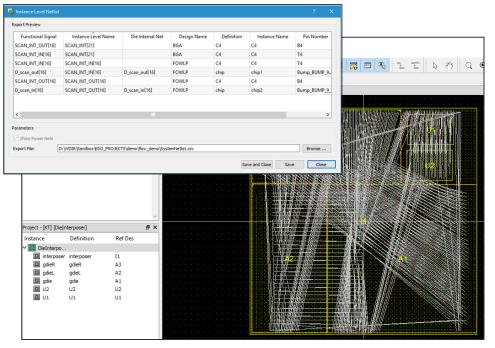
System Level Connectivity

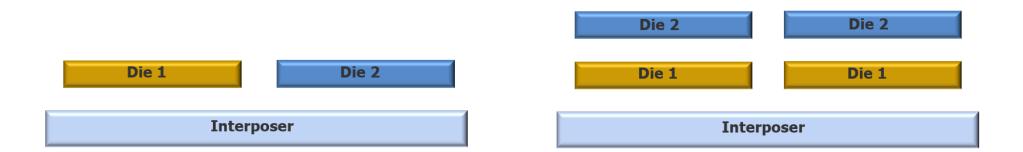

- Designer needs to aggregate connectivity from different design teams/formats
 - Silicon Interposer \rightarrow IC design team/IC design background/IC EDA tools
 - Organic substrate → Pkg design team/traditional packaging background/PCB like EDA tools

System Level Connectivity


- Designers need a connectivity aggregation EDA platform
 - Connectivity planning, optimization and management
 - Imports and exports connectivity with multiple formats (mix and match)
 - Allows interactive and manual assignments and modifications

System Level Connectivity Siemens EDA

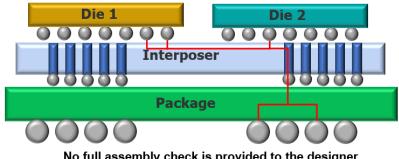

- Designers need a connectivity aggregation EDA platform
 - Connectivity planning, optimization and management
 - Imports and exports connectivity with multiple formats (mix and match)
 - Allows interactive and manual assignments and modifications


System Level Connectivity Siemens EDA

- Aggregates heterogeneous data into full system model
 - Utilizing standard formats like ODB++, CSV, LEF/DEF, Verilog and GDS
- Generates the system netlist for LVS/STA
- Manages device transformations and scaling differences
- Comprehensive connectivity visualization and reporting
- Scales with design complexity (can handle millions of pins)

Cross Domain Assembly Verification

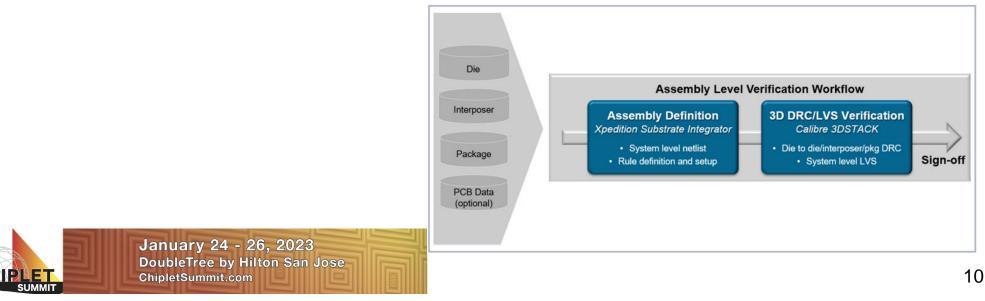
- PV sign off for a silicon interposer assembly requires:
 - Individual die(s) DRC and LVS
 Standard PDK from the foundry
 - Silicon interposer DRC and LVS _
 - Die(s) alignment and inter-connectivity to the interposer
 - Foundry support is challenging!
 - Die's location and orientation can change from one design house to another and from one project to another


Assembly Description is required

Cross Domain Assembly Verification

- What happens in case of multiple substrates? ullet
 - A silicon interposer (foundry)
 - An organic substrate (OSAT) •

Foundry 2	Die 2 provides PDK for die	Die 1 Foundry 1 provides e 2	PDK for die 1	
	Interposer			
	Foundry X provides PDK for interposer			
	Package			
OSA	AT does simple check	king for the package	•	


No full assembly check is provided to the designer

No single manufacturer can provide a "full system" PDK

Cross Domain Assembly Verification

- 3D-IC designers need a way to generate the PV setup files themselves
 - Account for the full, multi substrate assembly
 - Automated
- xSI includes a plug-in that enables the generation a complete Calibre 3DSTACK run set
 - Full assembly description and comprehensive assembly checks
 - Designer's centric verification

Conclusion

- Capturing the system-level connectivity in a multi-substrate 3D-IC can be a challenge
 - Especially true when each substrate is built using a different methodology, team, and/or format
- Designers need an EDA platform such as Xpedition Substrate Integrator (xSI) that can aggregate the different formats for a multisubstrate system and generate a system-level netlist
- Using xSI & Calibre 3DSTACK, the system level designer can automatically generate a complete assembly verification runset
 - A "designer-centric" approach since it is agnostic to the different die technology nodes and substrate manufacturers

Q&A

