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Heterogeneous In-Memory Computing (IMC)

 Challenges and needs of large-scale IMC

‒ Robustness, peripheral circuits and interconnection

 Chiplet-based benchmark tool: SIAM

 Heterogeneous IMC with 2.5D/3D chiplet

‒ Big-little chiplets for efficiency

‒ IMC chiplets for 3D sensing

 Summary and future perspectives
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Everything Goes UP
 From data volume to information processing algorithms
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[Micro Focus; Counterpoint, 2021; A. Gholami, 2020]
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Memory Access
 Compute is only part of the performance picture
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[A. Gholami, 2020; Hynix]
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In-Memory Computing
 IMC combines memory access and computation into a single unit

‒ 70-90% AI computing is Multiply-Accumulate (MAC)
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Weight Analog computing: 
resistive (current) or 
capacitive (charge)
‒ Digital IMC is also 

under research
 Diverse cells: CMOS, 

NVM (e.g., RRAM) 
and others

 Ideally, all weights 
stored on chip
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Promises and Challenges
 Potential for 10-100X higher 

energy efficiency and throughput
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 Limited scale: robustness, peripheral 
circuits, and interconnection

[N. Verma, ISSCC 2019]
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Robustness in the IMC Tile
 A fundamental issue in analog computing
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 SRAM based:
‒ Nonlinearity 
‒ Device variations
‒ Circuit mismatch and parasitics
‒ Temperature dependence

 RRAM based:
‒ Limited Roff/Ron (levels)
‒ Process variations 
‒ Stuck-at faults, retention and endurance
‒ Parasitics in the crossbar
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Circuits and Interconnection
 Peripheral circuits (ADC, buffer, 

adder, scaler, etc.) dominate the 
area and power consumption

 Interconnection and die cost: 
Limiting factors to a monolithic 
design for large-scale AI computing 
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[S. Yin, Micro 2019; G. Krishnan, JxCDC 2020]

90nm, 128 x 64, 3-bit ADC
Crossbar : ADC = 1: 6
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Interconnection in AI Algorithms
 A higher connection density improves the efficiency and learning capability
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Toward 2.5D/3D Heterogeneous Integration (HI)
 “Another direction of improvement of computing power is to make physical 

machines three-dimensional.” – Richard P. Feynman, 1985
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Chiplet-based Performance Benchmarking
 Scalable In-memory Acceleration with Mesh (SIAM) 
 Cross-layer: Device, circuits, chiplet-based architecture and algorithms
 Interconnect-centric: On-chip NoC, DDR/HBM with memory, NoP for chiplets
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github.com/gkrish19/SIAM-Chiplet-based-Scalable-In-Memory-Acceleration-with-Mesh-for-Deep-Neural-Networks

[G. Krishnan, ESWeek 2021]
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On-chip Circuit and NoC Engine
 SPICE and behavioral models for on-chip tiles and NoC circuits

‒ Tiles can be homogeneous or customized
‒ Network topologies include NoC-mesh, NoC-tree and H-tree
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Router cost from Si data

Network-on-Package and DRAM Engines
 Channel RLC parasitics calculated with PTM
 Driver cost extracted from AIB or Si data
 DRAM engine: DDR3, DDR4 and HBM
 On-going: SIAM for 3D integration
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[Y. Kim 2015; S. Ghose, 2018; Y. S. Shao, et al., 2019]

Calibration with SIMBA
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Homogeneous Mapping of IMC
 Network-on-Package (NoP) is a main contributor to area and energy consumption

‒ AIB transceiver/receiver dominates NoP cost
 The utilization rate significantly varies on a fixed tile size (crossbar dimension)
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[G. Krishnan, ESWeek 2021; G. Krishnan, ICCAD 2022; Z. Wang, IEDM 2022]
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AI Algorithms on IMC Chiplets
 Inherent non-uniform distribution of weights and activations across layers
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Low Ws, high Xs:
Little chiplet 

with high bandwidth
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Heterogeneity in AI Algorithms
 Weight (W): defines how many IMC tiles and chiplets for W storage (computing)
 Activation (X): defines how much data movement intra- and inter-chiplets (communication)
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Mapping to Big-Little Chiplets
 (W, X) provides a rule-of-thumb for algorithm mapping, layer by layer
 > 300× reduction in the product of Energy-Delay-Area
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[G. Krishnan, ICCAD 2022; Z. Wang, IEDM 2022]
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3D In-Sensor Computing with SIAM
 Heterogenous integration is critical for data movement in high-definition sensors

‒ 12 GB/s for 40 MP RGB at 100 fps; 1 TB/s for 4 MP DVS at 1 MHz 
 3D integration + AI computing for early detection and data compression

‒ A 288 kb 65nm test chip delivered, with SIAM on architecture definition
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Summary
 The demand on large-scale 

computing is ever increasing, driven 
by big algorithms and big data

 Heterogenous integration enables 
robust and efficient IMC systems
‒ Diverse memory devices
‒ Hybrid circuit structure
‒ Heterogeneous chiplet architecture
‒ Hierarchical interconnection

 Co-design across multiple layers is 
key to future success
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[TOP500, 2022]
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