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What are Waferscale Processors ?

» Processors that span a full silicon wafer
»>100mm wafer ~ 7900mm?

»>200mm wafer ~ 31,400mm?
»>300mm wafer ~ 70,000mm?2

»Comparison: largest System on Chip ~ 800mm?

» Challenge: fabrication, packaging, design, architecture, test all is tailored to
serve at most 800mm?

» This talk
»Why even bother building waferscale systems ? - A case study of benefits

»How do we address the myriad of daunting challenges in designing waferscale systems ?
—> an early attempt at solving and designing a waferscale system
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A Brief History of Waferscale Computing

Gene Amdahl’s Trilogy Systems Tandem Computers, Fujitsu

Other efforts: ITT Corporation, Texas Instruments. Recent efforts: Spinnaker (Neuromorphic Chip)
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What Happened to Waferscale Integration?

Didn’t work out (e.g., Trilogy Systems was one of the ;—-
biggest financial disasters in Silicon Valley before 2001) -
Their Approach to Waferscale: Monolithic >_. il —— <
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Time to Give Waferscale Another Go?

> Highly parallel applications are spread 100000 -
across many processors ;E 10000 -
L . 'E’ 1000 -
» Communication between the processors is @
still a big bottleneck & 100 -
z 10 -
e Low Bandwidth (a few 100s of GBps) £
1 =
o Hi : - On-Chip Between Between
High energy per bit (10s of pJ/bit) packages  Nodes
on a PCB

e Real estate on chip (15-25% of the chip is
devoted to SERDES 1/Os)
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Re-imagining Waferscale Integration

Q: What do we need from waferscale integration?

A: High density interconnection

-------------------- -+ EEE o \j_:

A wafer with
interconnect wiring only Small known good dies

Bond the dies on to the
interconnect wafer
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Enabling WSI Technology

UCLA Silicon Interconnect Fabric (Si-IF)*

Interconnect Wire

Copperpillar——pl I | I l
Si-IF

Bare Silicon Wafer Interconnect and Copper Bare die placement and
Pillar Patterning bonding on patterned Si-IF

Measured Bond Yield >99%
Allows waferscale integration with high yield

*UCLA CHIPS Programme: https://www.chips.ucla.edu/research/project/4
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Designing a Waferscale Graph
Processor Prototype: Challenges
and Solutions

[Appeared in DAC'21, ECTC'21]
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Graph Applications Have Unique
n) orist

Utilization w/ Perfect Scheduling Memory Requirements
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Massive number of processing cores needed Bandwidth beyond 50 TBps @ 10 ns/iteration
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Graph Processing Requires a New
Architecture 0@

Near Memory
Computing/
HPC Clusters

o o] o = A

CPUs GPUs Accelerators Ideal Architecture
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Waferscale Graph Engine Overview

Node:
Compute in the logic layer

/" Tile N\
DRAM
-— | N Remnt.e Work
Remote DRAM Requests I
u CPU JRemote DRAMrRequests
X 256
—
Remote Work|  prigrity X 256
Work List | Local Work
M with O -/

e Area=110 mm?2
* Power=35W

300 mm wafer has enough area for about 480 3D-stacked Node
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Speedup compared to a Multi-Chip Interposer
Baseline

# 100mm mesh_twv_wsi ¥ 100mm mesh_wsi = 200mm mesh_twv_wsi

% 200mm mesh_wsi l 300mm mesh_twv_wsi = 300mm mesh_wsi
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* Up to 60-70x speedup for 300 mm architecture compared to an multi-MCM baseline
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Building a (Simplified) 1024-Tile Architecture

1. Two dies per tile:
e Compute die —7.86 mm?
*  Memory die — 3.6 mm?

3.18 mm

2. Implemented in TSMC N40-LP

1. Tiles: 1024 (Total 14,336 Cores) = 2048 Chiplets
1. Total Memory Bandwidth (Data only) : 23.35 TB/s
1. Total Network Bandwidth (Data only) : 9.83 TB/s
1. Total Compute : 4.3 TOPs

1. Power : 300 mW (Per Tile), 700 W (total including losses)
Peripheral Power and Signal Delivery
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Tile Micro-Architecture

I 1. Architecture:
< NetworkRouters [¢—T—>  ® Compute die — 14x ARM CORTEX-M3 core
X 64KB Private SRAM per cores
-TAG -
7 : e [:] [¢:| Custom Network Infrastructure
Core Core | 14x | Core 3
~ ! Clock Management

i i i Pa:ret-i?er P?::ft JTAG Infrastructu re
¥ * . ' { *  Memory die — 5x 128KB Globally Shared SRAM
Feedthrough network interface

AHB Interconnect

2. Unique Features:
Support for compare-and-swap atomic operation
*  Packet priority schemes to avoid network deadlocks
*  Dual network for fault tolerance
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Challenges Faced While Designing the System

1. How should we deliver power to all the flip-chip bonded chiplets across the

wafer?
2. How can we reliably distribute clock across such a large area?
3. What is the testing strategy for such a large system?

4. What is the inter-chip network architecture and how do we achieve resiliency

if a few chiplets fail?

5. How to design the waferscale Si-IF substrate?

UCLA: NanoCAD:




Power Delivery

Signals

*Edge Power Delivery at 2.5V h@% ‘HJ—H“I‘H—I}

L. DO based power management at each
node

N
)
<

Rail-to-Rail
Voltage

=
»
<

*On-chip decoupling capacitance (20nF per
t||e) Vin
(2.5V to 1.4V)

*DeCap consumes 30% of the chip area

 Deep Trench Capacitors in Si-IF would
help
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Waferscale Clocking — Clock Generation

- PLL in each die for clock generation

'f .f---‘ 5L QullL QL § -!> -!>
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Waferscale Clocking — Clock Distribution

» Fast clock will be forwarded

O [
4 — s

Clock inverted at each hop to avoid duty cycle '; . %
distortion accumulation 5 gt =2l
y 't t

B! || m, (b,

« Communication between dies using 4 t | - f t
asynchronous interfaces '; '? A .? . '? .?
| | | i | | |

] (] L

« Fault tolerance in clock distribution network FURIT URIT Uir Upir Qi i o
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_| LID l l l _I | - PLL . - Clock generating edge tile
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Pre-bond Die Testing

fi
i H |
0

Only smaller pads attach to the Si-IF using fine

These pads are sacrificed and not used for
pitch pillars

Fine pitch pads cannot be probed
bonding

Larger pads for probe test
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Post-bonding JTAG Test Scheme

e (1) Multiple chains Wafer
* One JTAG chain results in single [ - —:I
point of failure vulnerability controller <
 Throughput is an issue:
. 2.? hours to It?ad the memories External _:I
using one chain controller (I
* 5 minutes to load with 32 chains
* (2) Progressive unrolling -
* Helps identify post-bonding External 4.:|
. controller
faulty dies

* Similar to IEEE 1838 proposal
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Network Resiliency
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/O Architecture

* |/O pitch of 10 um and depth of 20 um

 Simple cascaded buffer architecture

. 0.07-0.18 pJ/bit

 Two pillars per IO for redundancy

e ESD diodes and buffers need to fit within the
|/O footprint
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Waferscale Substrate Design — Custom Router

e Silicon Interconnect Fabric (Si-IF): 4 metal layers,
>15,000mm?

* OpenAccess C++ based efficient waferscale
custom router
. Signal routing layers are sparse, used
space-based routing methodology

e Si-IF wafer much larger than maximum reticle
size — designed to make it step-and-repeatable
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Smaller Prototype Bring-up was Successful

Current Status:

TR ANT O i | s * Small-scale prototype

* Full-tile functionality fully verified

Runs at 300 MHz

First demonstration of tightly coupled dis-aggregated
chiplet-based system

Custom high-density I/O PHY and protocol verified
Full applications using multi-core communication
over shared memory was verified

WEEE T

=l =2lslzlslzlzizizlalzlzlzlzlz]alz)

LOEEER A VTR T

4-tile Prototype

Future Plans:
» Wafer scale substrate manufacturing is being done in

f [est board with collaboration with external foundry partners

' Host Controller
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