
Using System-Level Architecture
Exploration for Chiplet SoC

Deepak Shankar
Chief Technologist
Mirabilis Design Inc.

2/21/24 MIRABILIS DESIGNÃ INC. CONFIDENTIAL

Implementation
Engineer

System Engineer

What is System Level Design
System Design Focuses on:
Designing the Right Product
•System decisions are optimized, repeatable and
linked to implementation
•Robust system design can survive implementation
compromises and get to market faster
•Mirabilis Design is focused here while EDA
companies are planning to move here

Implementation Focuses on:
Implementing the Product Right
•Perfect implementation cannot rescue product
from bad design assumptions
•Historical EDA Companies focus

Escalating complexity means increasing need for system design

What is System Architecture Exploration?
Scheduling/Arbitration

proportional
shareWFQ

staticdynamic
fixed priority

EDF
TDMA

FCFS

Communication Templates

Architecture # 1 Architecture # 2

Computation Templates

DSP

AI

GPU

DRAM
CPU

FPGA

µE

DSP

TDMA

Priority

EDF

WFQ

RISC

DSP

LookUp

Cipher

AI DSP CPU

GPU µE DDR

static

Which architecture is better suited
for our application?

Motivation for Analyze and Validate with
VisualSim

I/O

DSP

CPU1

CPU2

task1 task2 task3 task4

Contention
- limited resources
- scheduling/arbitration

Interference of multiple
applications
- limited resources
- scheduling/arbitration
- anomalies

Complex behavior
- input stream
- data dependent behavior

Justification for System-level Model
System with faster Bus is slower in places

Unpredictable System Response

Design Challenges in Implementing UCIe
•Large memory transaction can block a high priority control access
• For time critical application, these situations are not desirable
• Example : Automotive communication system

•Inter-chiplets and intra-chiplet integration must support the new applications
• Resource sizing of the interconnects is required to maximize bandwidth usage
• Example applications : Data Center and AI Accelerators

•Migrating from monolithic die to Chiplet requires new memory allocation strategies
• Limited memory needs to be partitioned across dies for both coherent and non-coherent operations
• Example: Apple M1 Ultra uses Chiplets to double the performance

System Modeling in
Chiplet Architecture Trade-offs
UCIe and inter-chiplet communication use detailed traffic and task graph to study the bandwidth
consumption

Overhead associate with streaming and packet protocols will have an impact on the
interconnect

System settings such as packet size, virtual channels, scheduling and frequency/size of requests
determine the system configuration and the power consumed

Integration of requirements with the system studies enables optimization of the specification

Defining the power management units

Use-Case Example to Understand the
Technical Challenges
•A chiplet has two CXL stacks sharing the physical link.
•Arbiter across the Die-to-Die adapter must send Flits alternatively between the 2 protocols.
• If one of the Protocol layers doesn’t have data to transmit, then instead of payload, “NOP” frames are

inserted. If one of the Protocol stacks is idle for most of the time, then bandwidth could essentially be wasted
on the “NOP” frames.

•Increasing the number of modules for either the standard or advanced package provides more
bandwidth.
• But is that extra bandwidth needed for the application?

•What happens if multiple chiplets in your design require the data stored at the same address location
which is in another chiplet?
• Consider the impact of cache coherency

•Can peak throughput be guaranteed for your application in a shared resource environment?
• CPU is on one die and controls the execution, while the AI Engine is on a different die, while memory

controller is a different die

How does System Modeling of UCIe based
multi-die SoC work?

Multi-Media Application –
UCIe Template provided by Intel

CPU – High
Performance

cores

CPU – Low
Power cores

Audio/Video
Encoder/Decoder I/O Tile

M
E
M

M
E
M

M
E
M

PCIe 6.0 PCIe 6.0

P
C
I
e
6
.
0

C
X
L
3
.
0

UCIe
Retimer

Off-Package
Interconnect

NVMe SSD
chiplet

UCIe
Retimer

C
X
L
3
.
0

How much should the
retimer timeout be set to?

Do we need a multi module setup?

How much
should the
transfer rate
between UCIe
links be set to?
4 GTs or 8 GTs
… or 32 GTs?

Start with a System Block Diagram

VisualSim Model

Create a VisualSim model using existing building blocks

Stats
Advanced package, 4 module, 32 GT/s config Standard package, Single module, 4 GT/s config

~300x latency
difference can be

observed. However, for
non-time critical

applications, Standard
UCIe package option

looks attractive

Study the statistics to decide on the best configuration

Application Examples of UCIe based multi-
die SoC

Example 1 – Multi-Media applications

CPU – High
Performance

cores

CPU – Low
Power cores

Audio/Video
Encoder/Decoder I/O Tile

M
E
M

M
E
M

M
E
M

PCIe 6.0 PCIe 6.0

P
C
I
e
6
.
0

C
X
L
3
.
0

Retimer Off-Package Interconnect

Example 2 :
Automotive Autonomous Driving

UCIe

AI Engine Tiles

Warp
Scheduler

PEPEPEPE

Local Mem

GPU

Analog Chiplet

ADC DAC

PLL

ADC DAC

PLL

Processor subsystem

Core L1
B
u
s

SLC

Example 3 : Cache Coherency using UCIe

UCIe

SERDES

32nm

GPU

7nm

RISC-V Cores

5nm

ARM Cores

 10nm

DSP

10nm

SLC chiplet
22nm

LPDDR5
28nm

C
a
c
h
e

C
a
c
h
e

C
a
c
h
e

C
a
c
h
e

Analyzing UCIe based multi-die SoC using
VisualSim System Model

Autonomous driving

UCIe

AI Engine Tiles

Warp
Scheduler

PEPEPEPE

Local Mem

GPU

Memory chiplet

ADCDDR5

Processor subsystem

Core L1
B
u
s

SLC

• Optimal
mesh size
(mxn) ?

• Best sample
size (16
bytes vs 32
bytes etc) ?

Use a single protocol
stack or multi protocol
stack?Do we need PCIe

gen6 or still use
gen5 for meeting
application
requirements?

VisualSim System Model using UCIe in
ADAS SoC

Statistics for Multi-Die SoC

• Note the AI Engine
latency spikes

• For multi protocol,
half bandwidth for
each protocol.

• Older gen protocols
are mixed with PCIe 6,

• Lower FLIT size
increases latency.

Comparing Different Configurations using
UCIe Interface

All Die Adapters use PCIe 6.0
Die Adapters use PCIe 6.0 and
Streaming Protocols (AXI)

Lower latency when using PCIe 6.0

Mirabilis Design
VisualSim Architect

About Mirabilis Design

Software Company with Key Development Team in India
Integrates Model-based Systems Engineering with the electronics development flow

Development and Support Centers
India, USA, South Korea, Japan and China

VisualSim Architect - Modeling and Simulation Software
Graphical modeling, multi-domain simulator, system-level IP, analysis tools and open API

DIGITAL ENABLEMENT OF THE ELECTRONICS PRODUCT DEVELOPMENT FRONT-END

Market Segments
Semiconductors, Automotive and, Aerospace and Defense

Design Enablement
Architecture trade-offs, system validation, early functional testing and communication

Networking

What we provide……..
Architecture Exploration
• IP blocks
• Semiconductors
• Networks
• Systems
• Software

To Trade-off
• Performance (Latency, Throughput)
• Power (Peak, Instant, Cumulative, Heat,

Temp and Battery lifecycle)
• Functionality (algorithm, arbitration,

scheduling, flow control)

To Make Decisions
• Product feasibility
• System sizing
• Mapping Task graphs to heterogeneous resources
• Hardware-software partitioning
• Generating documentation and models for sharing
• Test benches, design optimization and validation

Using
• System-level modelling IP and Generators
• Graphical, Hierarchical with Polymorphic types
• Multi-domain simulator
• AI-based multi-core diagnostic systems

integrated with tracking
• Open API to integrate software code and third-

party simulators

Evaluating UCIe based multi-die SoC to
meet timing and power

