
CHIPLET SUMMIT 2024

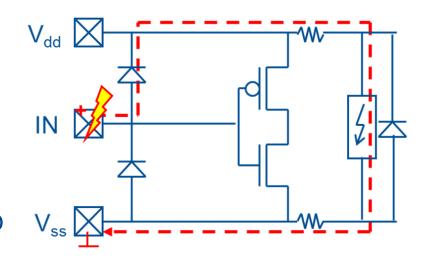
PROTECTING AGAINST ESD IN DIE-TO-DIE INTERFACES

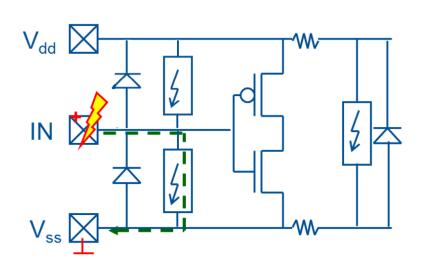
SOFICS - 2024

- ESD for die-2-die interfaces
 - Requirements
- ESD protection for I/Os
- Examples
- Select the right ESD robustness level

ESD requirements for die-2-die interfaces / chiplets

- Die-2-die interfaces need specialty ESD protection
 - Much smaller area than GPIO
 - Flexibility related to power grid
 - Signal voltage below the GPIO voltage range
 - Lower drive current compared to regular I/Os
 - ESD protecting for thin oxide transistors
 - (Very) low parasitic capacitance
 - Lower ESD robustness can be tolerated.

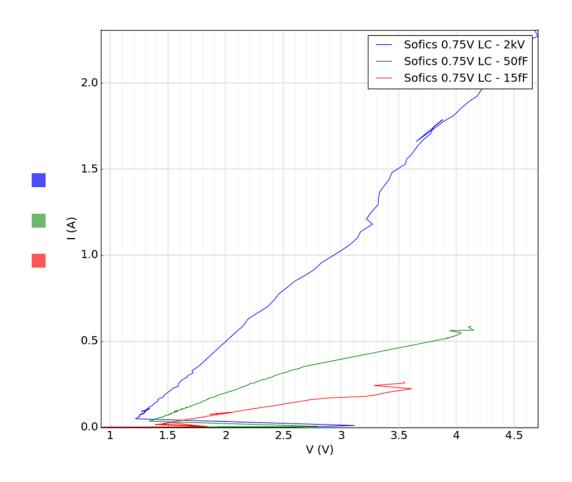



- ESD for die-2-die interfaces
- ESD protection for I/Os
 - Conventional approach
 - Local clamp approach used by Sofics
- Examples
- Select the right ESD robustness level

Local ESD clamp in I/O area

- Conventional ESD protection
 - Dual diode approach
 - Not optimal for die-2-die
- Solution: Local clamp
 - Strongly reduced voltage drop during ESD
 - Reduced dependence on power clamp
 - Reduced parasitic capacitance
 - Reduced leakage
 - Easy optimization
 - Flexibility for die-2-die and I/O segments

- ESD for die-2-die interfaces
- ESD protection for I/Os
- Examples
 - TSMC 7nm
 - TSMC 6nm
 - TSMC 5nm
- Select the right ESD robustness level

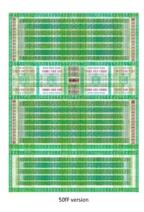

Local ESD protection in 7nm FinFET

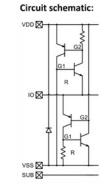
Silicon proven

- Sensitive circuit
 - Uses thin oxide transistors
- Different versions
 - 2kV HBM for regular IO circuits
 - 400V HBM for die-2-die interface
 - 150V HBM for die-2-die interface

Lower HBM rating

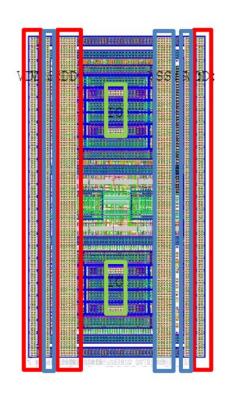
- Smaller size
- Lower parasitic capacitance
- For high-bandwidth interconnect

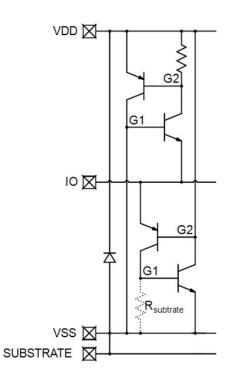



Local ESD protection in 7nm FinFET

Silicon proven

- Full-local ESD protection
 - ESD-on-SCR
- Different versions
 - 2kV HBM for regular IOs
 - 400V HBM for die-2-die interface
 - 150V HBM for die-2-die interface

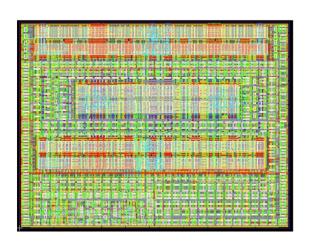


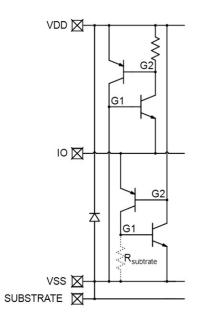


HBM [V]	Capacitance [fF]	Width [um]	Height [um]	Area [um²]	SCR width [um]
150V	15fF	7.43	21.1	<160	2x 3.5
400V	50fF	15.4	21.1	<330	2x 11.5
2kV	Not optimized	24.3	30	<750	4x 20.8

Local ESD protection in 6nm FinFET

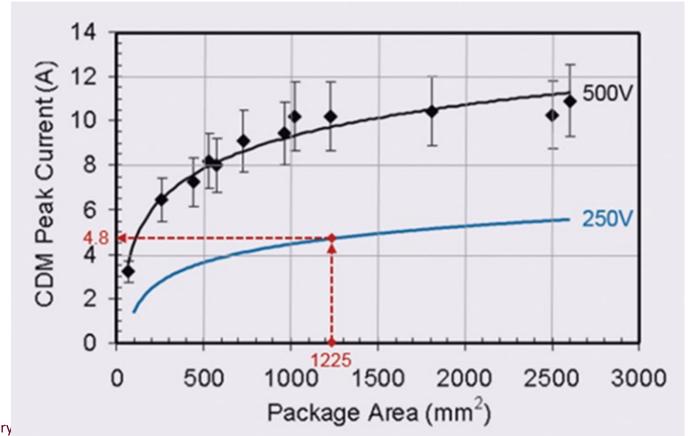
- ESD protection for SerDes Tx
 - 0.75V SerDes interface
 - Total parasitic capacitance:
 - <13 fF
 - ESD protection:
 - 100V HBM
 - Leakage at 0.75V DC
 - 10pA at 25°C
 - 100pA at 125°C
 - Area: 7.5um x 22um





Local ESD protection in 5nm FinFET

- ESD protection for SerDes Tx
 - 0.9V SerDes interface
 - Total parasitic capacitance:
 - <14 fF
 - ESD protection:
 - 100V HBM
 - Leakage at 0.9V DC
 - <100nA
 - Area: 10um x 13um


- ESD for die-2-die interfaces
- ESD protection for I/Os
- Examples
- Select the right ESD robustness level

CDM peak current depends on package size

- CDM peak current (vertical)
 - Depends on CDM voltage
 - Depends on package area (horiz.)

- Example: 250V CDM
 - Small package: < 2A peak current</p>
 - Larger package: ~5A peak current

Industry discussion to reduce CDM for SerDes

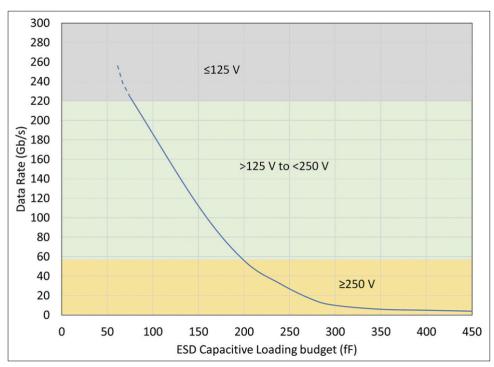


Figure 2: Data Rates of single lane SERDES vs. Allowed ESD Capacitive Loading Budget of high-speed IO circuits using non return to zero signaling. From [3]

- CDM related to cap. budget
 - Below 75fF
 - CDM of 125V
 - 220 Gbps and faster
 - 75fF to 200fF
 - CDM between 125V to 250V
 - 56 to 220 Gbps
 - 200fF loading capacitance
 - CDM of 250V
 - 56 Gbps or slower

Further reduced CDM level for die-2-die interfaces

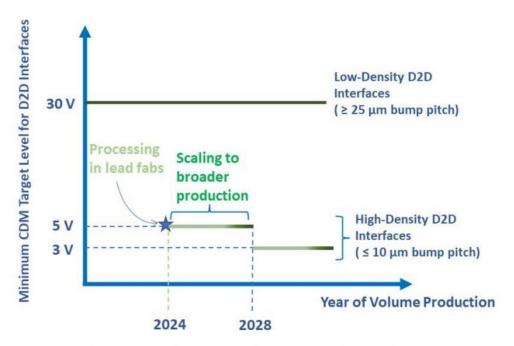


Figure 1: Roadmap of CDM Targets of Die-to-Die Interfaces

Table 1: Conversion Table of V_{CDM} to I_{peak} in a CDM Test Set-up According to ANSI/ESDA/JEDEC JS-002. Note: The peak current depends on the die size. The average peak currents for the small and large calibration targets are presented.

are presented.						
$ m V_{CDM}$	I_{peak} for C (die) = 7.2 pF	I_{peak} for C (die) = 55 pF				
	(corresponds to a typical die	(corresponds to a typical die				
	area of $\sim 62 \text{ mm}^2$)	area of $\sim 500 \text{ mm}^2$)				
125 V	1.9 A	3.0 A				
30 V	455 mA	720 mA				
5 V	76 mA	120 mA				
3 V	46 mA	72 mA				

Industry discussions

- Lower CDM specifications
- 125V to 250V for regular pads
- Chiplets, further reduced
 - CDM of 30V for low density D2D
 - Further reduction to 5V and 3V
 - High density D2D
 - Leading fabs (ESD control!)

https://esdindustrycouncil.org/ic/en/s
hared/industry-council-white-paper-2pii-rev-1.0-final.pdf

- ESD for die-2-die interfaces
- ESD protection for I/Os
- Examples
- Select the right ESD robustness level
- Why Sofics?

Sofics IP: Solutions for ICs

20+

years in

business

70+

patents

100+

customers

5000+

IC designs

use Sofics IP

5M+

wafers with

Sofics IP

2B+

ICs rely on

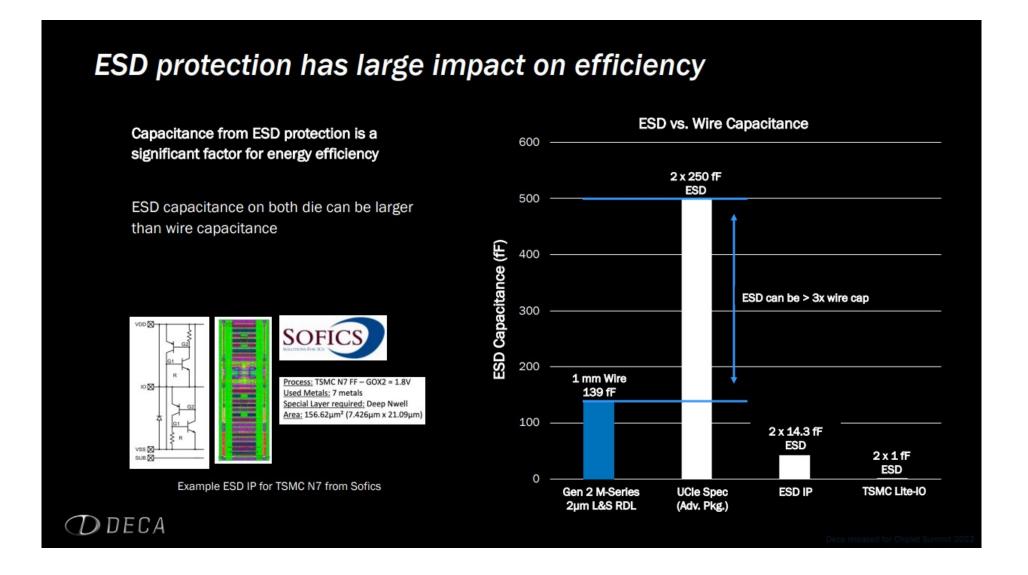
Sofics IP

All kinds

of applications

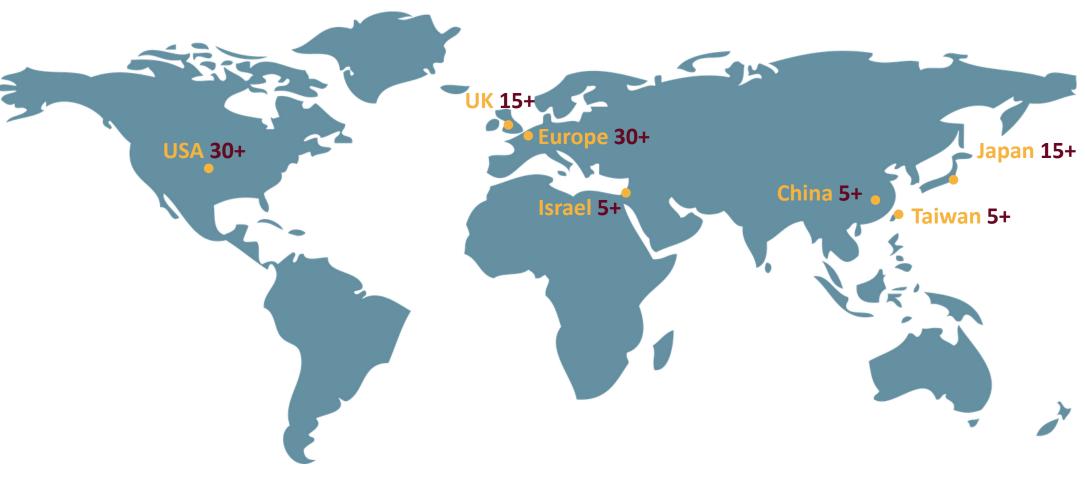
10+ years

TSMC partner


50+

processes

0.5um - 3nm



Chiplet partnership – DECA / Sofics

100+ customers globally

Customer success example

Graphcore Colossus

Al accelerator on TSMC 16nm FinFET 23.5B transistors 800mm²

Phil Horsfield, VP Silicon

"Sofics offered us flexibility with customization, a proven silicon ESD portfolio and fast time to market. Within just a few weeks we went from first contact to contract to solution delivery."

Sofics' strategic partnership with TSMC

TSMC relationship

Sofics supports 60+ TSMC customers

USA, Europe, Israel, Japan, China,...

Close cooperation 10+ years

DCA alliance member since 2008

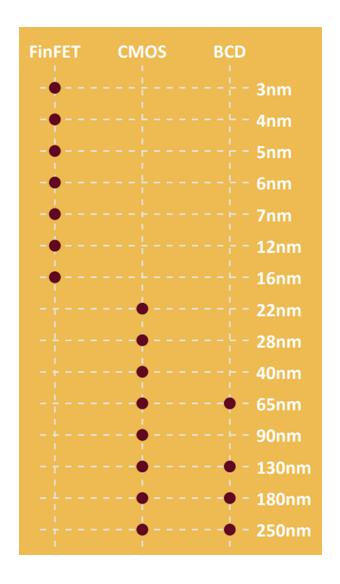
IP alliance member since 2010

TSMC9000 assessment

Frequent MPW shuttles

BCD, CMOS, FinFET

TSMC audited secure vault


FinFET designs in office in Belgium

Sofics' IP is proven on 50+ processes

CMOS

Mature: 0.5um to 180nm

Mainstream: 130nm to 65nm

Advanced: 40nm to 22nm

FinFET technology

16nm to 3nm

SOI technology

130nm to 22nm

BCD technology

250nm to 55nm

BiCMOS technology

Sofics IP is used in many applications

Internet of Things, wearables

15+ customers

Focus: Low power

5+ customers

Focus: High performance

Space applications

5+ customers

Focus: Radiation hard solutions

Sofics IP is used in many applications

Automotive

15+ customers

Focus: Higher reliability

5+ customers

Focus: Higher reliability

Datacenter and wireless

40+ customers

Focus: Low parasitic capacitance

Meet our team in Belgium

SOFICS © 2024 proprietary & confidential

Next steps

Get more information

Sofics website: www.sofics.com

Articles: https://monthly-pulse.com/

Discuss your IC project

Ehsan Fallah
efallah@sofics.com

Stay informed

Follow us on LinkedIn

https://www.linkedin.com/company/sofics/

Bart Keppens
bkeppens@sofics.com

