
Chiplet Summit 2025

Using Federated Simulation
as a Framework for

Chiplet-Based Design
Kevin Cameron, EDA Consultant

2/20

About Kevin Cameron
 Shifted from analog circuit design to EDA in the 1980s
 Spent the 1990s working on (parallel) simulation tools

and (AMS) languages
 Shifted to design verification in 2000s
 Moving back into analog (DV) 2014-
 Now attempting to automate (analog) IC design with AI

3/20

What is Federated Simulation?
 Using multiple simulators together to handle

different pieces or aspects of a design
 Different domains handled by specialist tools

 Thermal power, heatsinking
 Mechanical back-annotation, heatsinking
 Electrical circuits, power, photonics, RF

4/20

Motivation for Federated Simulation
(with AI)

 Does not require a simulator that does everything
 Minimal extensions to existing simulators
 Can handle some problems at the DevOps/OS level
 Potentially higher performance through parallel

processing/HiL
 Falling number of HW designers, increasing complexity

 more automation needed, AI can help
 divide and conquer, an “agentic” approach

5/20

Legacy Problems
 Batch processing tools from EDA vendors
 Poor integration of tools
 Net-listing
 No support for new logic/power handling in digital

 Asynchronous, Quasi-adiabatic, DVFS
 Poor support for RF, PMIC, Chiplets & Systems
 Low precision simulation (1/0) doesn’t suit AI

6/20

What does AI for design need?
 Fast verification of experiments

 A lot of experiments

 Digital Twinning Frameworks

 Specifications (models) and/or test-benches

7/20

Digital Twinning
 Making one thing look like another

 SPICE to Verilog-AMS
 Synthesis -

 Verilog-AMS to Schematic
 C++ to Gates

 Methods
 Gradient descent optimization
 Generative AI

8/20

Simple Digital Twinning

Circuit

Twin

ATPG

Compare

Tune

9/20

Digital Twinning for Synthesis
Spec model

Circuit

ATPG/Test-
bench

Compare

Tune

Gen-AI/
Synthesis

10/20

Twinning Environment as Simulation Component

Spec model

Circuit

Compare
(Log

Differences)

Tune

Gen-AI/
Synthesis

Output to
federation

Input from
federation

11/20

Traditional Hardware Design
 Loose English specs

 Bottom-up/middle-out with RTL and SDKs

 Multiple issues tackled in parallel

 Emulation for software development

12/20

Hardware from Software
 The code is the spec, the workload is the test-bench
 Code comes at the granularity of routines and shared

libraries
 Every routine can be considered a separate “computing

context” in a neural-network -like graph
 Routine call/return can be viewed as message-passing
 Parallelize first, then accelerate the pieces

13/20

Twinning Environment for SW Component

Executable
(Source Code)

Accelerated
Version

Compare
(verify)

Tune/
Recompile

Gen-AI/
Synthesis

Output
selection

Input

Container

Federated
Control

Local Data

14/20

HW/SW Co-design Methodology
 Starting on X86/ARM, target heterogeneous mix of:

 DSP, GPU, Extended RISC-V, FPGA, ASIC
 AI Accelerators

 Compile and analyze per routine.
 Drop tightly coupled routines into same container
 Map containers to Chiplet-accelerators/ICs/soft-IC

 Chiplet vendors provide tailored versions of shared
libraries

15/20

Communication Design
 Evaluate communication cost between containers

(SDN), assign logical channels (between IPV6
end-points) to physical channels

 Simulate physical channels similarly to HW
twinning

 Trade off latency/throughput/power
 Group containers with high cost together

16/20

Federated Design
 Adjacent container groups can trade members

during design/synthesis
 Optimize for:

 Power
 Communication
 Cost
 Yield

17/20

Runtime Optimizations
 Dynamic migration of containers

 cloning/redundancy
 Short circuit IPv6 for static channels
 Neuromorphic code

 adapt to workload
 Scaling

 move containers as size/conditions change

18/20

Conclusions
 Multi-domain federated simulation will be used

for verification
 Federated simulation will use AI digital twinning

for acceleration of hardware and software
 AI synthesis is just a reversal of the twinning

process using gen-AI and tuning

19/20

Q & A

20/20

Implementation of an FS Framework
 Objects need hierarchical names and addresses

 IPv6/DNS in virtual network
 C/C++ APIs and/or micro-services

 May need to cross OS boundaries
 Handle conversions outside slave simulators

 Simulators attach drivers and receivers to the network objects
 Speculative scheduling

 Check-pointing and back-tracking
 Drop and restart members (pluggable like the real world)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

